Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nature ; 610(7931): 381-388, 2022 10.
Article in English | MEDLINE | ID: covidwho-2050416

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and caused the devastating global pandemic of coronavirus disease 2019 (COVID-19), in part because of its ability to effectively suppress host cell responses1-3. In rare cases, viral proteins dampen antiviral responses by mimicking critical regions of human histone proteins4-8, particularly those containing post-translational modifications required for transcriptional regulation9-11. Recent work has demonstrated that SARS-CoV-2 markedly disrupts host cell epigenetic regulation12-14. However, how SARS-CoV-2 controls the host cell epigenome and whether it uses histone mimicry to do so remain unclear. Here we show that the SARS-CoV-2 protein encoded by ORF8 (ORF8) functions as a histone mimic of the ARKS motifs in histone H3 to disrupt host cell epigenetic regulation. ORF8 is associated with chromatin, disrupts regulation of critical histone post-translational modifications and promotes chromatin compaction. Deletion of either the ORF8 gene or the histone mimic site attenuates the ability of SARS-CoV-2 to disrupt host cell chromatin, affects the transcriptional response to infection and attenuates viral genome copy number. These findings demonstrate a new function of ORF8 and a mechanism through which SARS-CoV-2 disrupts host cell epigenetic regulation. Further, this work provides a molecular basis for the finding that SARS-CoV-2 lacking ORF8 is associated with decreased severity of COVID-19.


Subject(s)
COVID-19 , Epigenesis, Genetic , Histones , Host Microbial Interactions , Molecular Mimicry , SARS-CoV-2 , Viral Proteins , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , Epigenome/genetics , Histones/chemistry , Histones/metabolism , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
2.
Thromb Haemost ; 122(1): 113-122, 2022 01.
Article in English | MEDLINE | ID: covidwho-1324456

ABSTRACT

OBJECTIVES: Pulmonary thrombus formation is a hallmark of coronavirus disease 2019 (COVID-19). A dysregulated immune response culminating in thromboinflammation has been described, but the pathomechanisms remain unclear. METHODS: We studied 41 adult COVID-19 patients with positive results on reverse-transcriptase polymerase-chain-reaction assays and 37 sex- and age-matched healthy controls. Number and surface characteristics of extracellular vesicles (EVs) and citrullinated histone H3 levels were determined in plasma upon inclusion by flow cytometry and immunoassay. RESULTS: In total, 20 patients had severe and 21 nonsevere disease. The number of EV (median [25th, 75th percentile]) was significantly higher in patients compared with controls (658.8 [353.2, 876.6] vs. 435.5 [332.5, 585.3], geometric mean ratio [95% confidence intervals]: 2.6 [1.9, 3.6]; p < 0.001). Patients exhibited significantly higher numbers of EVs derived from platelets, endothelial cells, leukocytes, or neutrophils than controls. EVs from alveolar-macrophages and alveolar-epithelial cells were detectable in plasma and were significantly higher in patients. Intercellular adhesion molecule-1-positive EV levels were higher in patients, while no difference between tissue factor-positive and angiotensin-converting enzyme-positive EV was seen between both groups. Levels of EV did not differ between patients with severe and nonsevere COVID-19. Citrullinated histone H3 levels (ng/mL, median [25th, 75th percentile]) were higher in patients than in controls (1.42 [0.6, 3.4] vs. 0.31 [0.1, 0.6], geometric mean ratio: 4.44 [2.6, 7.7]; p < 0.001), and were significantly lower in patients with nonsevere disease compared with those with severe disease. CONCLUSION: EV and citrullinated histone H3 are associated with COVID-19 and could provide information regarding pathophysiology of the disease.


Subject(s)
COVID-19/blood , Extracellular Vesicles/pathology , Histones/blood , SARS-CoV-2 , Adult , Aged , Biomarkers/blood , Blood Platelets/pathology , COVID-19/complications , Case-Control Studies , Citrullination , Extracellular Traps/metabolism , Female , Histones/chemistry , Humans , Male , Middle Aged , Pandemics , Severity of Illness Index , Thromboinflammation/blood , Thromboinflammation/etiology
3.
Genome ; 64(4): 372-385, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1006430

ABSTRACT

The COVID-19 pandemic is one of the most significant public health threats in recent history and has impacted the lives of almost everyone worldwide. Epigenetic mechanisms contribute to many aspects of the SARS-CoV-2 replication cycle, including expression levels of viral receptor ACE2, expression of cytokine genes as part of the host immune response, and the implication of various histone modifications in several aspects of COVID-19. SARS-CoV-2 proteins physically associate with many different host proteins over the course of infection, and notably there are several interactions between viral proteins and epigenetic enzymes such as HDACs and bromodomain-containing proteins as shown by correlation-based studies. The many contributions of epigenetic mechanisms to the viral life cycle and the host immune response to infection have resulted in epigenetic factors being identified as emerging biomarkers for COVID-19, and project epigenetic modifiers as promising therapeutic targets to combat COVID-19. This review article highlights the major epigenetic pathways at play during COVID-19 disease and discusses ongoing clinical trials that will hopefully contribute to slowing the spread of SARS-CoV-2.


Subject(s)
COVID-19/genetics , COVID-19/virology , Epigenesis, Genetic , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/genetics , Citrullination , Cytokines/genetics , DNA Methylation , Histones/chemistry , Humans , Pandemics
4.
Biochem Biophys Res Commun ; 526(4): 947-952, 2020 06 11.
Article in English | MEDLINE | ID: covidwho-38740

ABSTRACT

The outbreak of corona virus disease 2019 (COVID-19) caused by SARS-CoV-2 infection is spreading globally and quickly, leading to emerging health issues. SARS-CoV-2 enters into and infects host cells through its spike glycoprotein recognizing the cell receptor Angiotensin-converting enzyme II (ACE2). Here, we noticed that ACE2 was further enhanced by SARS-CoV-2 infection. Human germ cells and early embryos express high level of ACE2. Notably, RNA-seq result showed that reduction of H3K27me3, but not H3K4/9/36me3, led to upregulation of Ace2 expression in mouse germ cell line GC-2. In agreement with this result, we found in human embryonic stem cells that ACE2 expression was significantly increased in absence of EZH2, the major enzyme catalyzing H3K27me3. ChIP-seq analysis further confirmed decrease of H3K27me3 signal and increase of H3K27ac signal at ACE2 promoter upon EZH2 knockout. Therefore, we propose that EZH2-mediated H3K27me3 at ACE2 promoter region inhibits ACE2 expression in mammalian cells. This regulatory pattern may also exist in other human cells and tissues. Our discovery provides clues for pathogenesis and targeted drug therapy towards ACE2 expression for prevention and adjuvant therapy of COVID-19.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic , Gene Expression Regulation , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/virology , Angiotensin-Converting Enzyme 2 , Animals , COVID-19 , Embryonic Stem Cells , Gene Knockout Techniques , Histone Code , Histones/chemistry , Histones/metabolism , Humans , Lysine/analysis , Lysine/metabolism , Methylation , Mice , Organ Specificity , Pandemics , Promoter Regions, Genetic , SARS-CoV-2 , Transcription, Genetic , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL